87 research outputs found

    Inhomogeneous Fragmentation of the Rolling Tachyon

    Get PDF
    Dirac-Born-Infeld type effective actions reproduce many aspects of string theory classical tachyon dynamics of unstable Dp-branes. The inhomogeneous tachyon field rolling from the top of its potential forms topological defects of lower codimensions. In between them, as we show, the tachyon energy density fragments into a p-dimensional web-like high density network evolving with time. We present an analytic asymptotic series solution of the non-linear equations for the inhomogeneous tachyon and its stress energy. The generic solution for a tachyon field with a runaway potential in arbitrary dimensions is described by the free streaming of noninteracting massive particles whose initial velocities are defined by the gradients of the initial tachyon profile. Thus, relativistic particle mechanics is a dual picture of the tachyon field effective action. Implications of this picture for inflationary models with a decaying tachyon field are discussed.Comment: 10 pages, 1 figur

    Preheating in Supersymmetric Theories

    Get PDF
    We examine the particle production via preheating at the end of inflation in supersymmetric theories. The inflaton and matter scalars are now necessarily complex fields, and their relevant interactions are restricted by holomorphy. In general this leads to major changes both in the inflaton dynamics and in the efficiency of the preheating process. In addition, supersymmetric models generically contain multiple isolated vacua, raising the possibility of non-thermal production of dangerous topological defects. Because of these effects, the success of leptogenesis or WIMPZILLA production via preheating depends much more sensitively on the detailed parameters in the inflaton sector than previously thought.Comment: 24 pages, 3 figures; references adde

    Beauty is Attractive: Moduli Trapping at Enhanced Symmetry Points

    Full text link
    We study quantum effects on moduli dynamics arising from the production of particles which are light at special points in moduli space. The resulting forces trap the moduli at these points, which often exhibit enhanced symmetry. Moduli trapping occurs in time-dependent quantum field theory, as well as in systems of moving D-branes, where it leads the branes to combine into stacks. Trapping also occurs in an expanding universe, though the range over which the moduli can roll is limited by Hubble friction. We observe that a scalar field trapped on a steep potential can induce a stage of acceleration of the universe, which we call trapped inflation. Moduli trapping ameliorates the cosmological moduli problem and may affect vacuum selection. In particular, rolling moduli are most powerfully attracted to the points with the largest number of light particles, which are often the points of greatest symmetry. Given suitable assumptions about the dynamics of the very early universe, this effect might help to explain why among the plethora of possible vacuum states of string theory, we appear to live in one with a large number of light particles and (spontaneously broken) symmetries. In other words, some of the surprising properties of our world might arise not through pure chance or miraculous cancellations, but through a natural selection mechanism during dynamical evolution.Comment: 50 pages, 4 figures; v2: added references and an appendix describing a related classical proces

    D-Brane Effective Actions and Particle Production near the Beginning of the Tachyon Condensation

    Full text link
    In this paper we will study the quantum field theory of fluctuation modes around the classical solution that describes tachyon condensation on unstable D-brane.We will calculate the number of particle produced near the beginning of the rolling tachyon process. We will perform this calculation for different tachyon effective actions and we will find that the rate of the particle production strongly depends on the form of the effective action used for the description of the early stage of the tachyon condensation.Comment: 21 page

    No Go Theorem for Self Tuning Solutions With Gauss-Bonnet Terms

    Full text link
    We consider self tuning solutions for a brane embedded in an anti de Sitter spacetime. We include the higher derivative Gauss-Bonnet terms in the action and study singularity free solutions with finite effective Newton's constant. Using the methods of Csaki et al, we prove that such solutions, when exist, always require a fine tuning among the brane parameters. We then present a new method of analysis in which the qualitative features of the solutions can be seen easily without obtaining the solutions explicitly. Also, the origin of the fine tuning is transparent in this method.Comment: 17 pages, 3 figure

    Particle Production in Tachyon Condensation

    Full text link
    We study particle production in the tachyon condensation process as described by different effective actions for the tachyon. By making use of invariant operators, we are able to obtain exact results for the density of produced particles, which is shown to depend strongly on the specific action. In particular, the rate of particle production remains finite only for one of the actions considered, hence confirming results previously appeared in the literature.Comment: LaTeX, 6 pages, 3 figure

    On the Extra Mode and Inconsistency of Horava Gravity

    Full text link
    We address the consistency of Horava's proposal for a theory of quantum gravity from the low-energy perspective. We uncover the additional scalar degree of freedom arising from the explicit breaking of the general covariance and study its properties. The analysis is performed both in the original formulation of the theory and in the Stueckelberg picture. A peculiarity of the new mode is that it satisfies an equation of motion that is of first order in time derivatives. At linear level the mode is manifest only around spatially inhomogeneous and time-dependent backgrounds. We find two serious problems associated with this mode. First, the mode develops very fast exponential instabilities at short distances. Second, it becomes strongly coupled at an extremely low cutoff scale. We also discuss the "projectable" version of Horava's proposal and argue that this version can be understood as a certain limit of the ghost condensate model. The theory is still problematic since the additional field generically forms caustics and, again, has a very low strong coupling scale. We clarify some subtleties that arise in the application of the Stueckelberg formalism to Horava's model due to its non-relativistic nature.Comment: Discussion expanded; a figure added; accepted to JHE

    Braneworld dynamics with the BraneCode

    Full text link
    We give a full nonlinear numerical treatment of time-dependent 5d braneworld geometry, which is determined self-consistently by potentials for the scalar field in the bulk and at two orbifold branes, supplemented by boundary conditions at the branes. We describe the BraneCode, an algorithm which we designed to solve the dynamical equations numerically. We applied the BraneCode to braneworld models and found several novel phenomena of the brane dynamics. Starting with static warped geometry with de Sitter branes, we found numerically that this configuration is often unstable due to a tachyonic mass of the radion during inflation. If the model admits other static configurations with lower values of de Sitter curvature, this effect causes a violent re-structuring towards them, flattening the branes, which appears as a lowering of the 4d effective cosmological constant. Braneworld dynamics can often lead to brane collisions. We found that in the presence of the bulk scalar field, the 5d geometry between colliding branes approaches a universal, homogeneous, anisotropic strong gravity Kasner-like asymptotic, irrespective of the bulk/brane potentials. The Kasner indices of the brane directions are equal to each other but different from that of the extra dimension.Comment: 38 pages, 10 figure

    Inhomogeneous tachyon condensation

    Get PDF
    We investigate the spacetime-dependent condensation of the tachyon in effective field theories. Previous work identified singularities in the field which appear in finite time: infinite gradients at the kinks, and (in the eikonal approximation) caustics near local minima. By performing a perturbation analysis, and with numerical simulations, we demonstrate and explain key features of the condensation process: perturbations generically freeze, and minima develop singular second derivatives in finite time (caustics). This last has previously been understood in terms of the eikonal approximation to the dynamics. We show explicitly from the field equations how this approximation emerges, and how the caustics develop, both in the DBI and BSFT effective actions. We also investigate the equation of state parameter of tachyon matter showing that it is small, but generically non-zero. The energy density tends to infinity near field minima with a charateristic profile. A proposal to regulate infinities by modifying the effective action is also studied. We find that although the infinities at the kinks are successfully regularised in the time-dependent case, caustics still present.Comment: 4 figures,19p

    Tachyon cosmology with non-vanishing minimum potential: a unified model

    Full text link
    We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behaves quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.Comment: 18 p
    • …
    corecore